
1 Linear regression approach
Linear regression model for each observation yij ∈ D (probe i and tissue sample
j) is of the form yij = pT0jxic(j) + �ij , �ij ∼ N(0, 1/�i). By choosing one
experimental condition 1 ≤ c ≤ C and selecting only those tissue samples
j∗ ∈ {j(c)1 , j

(c)
2 , . . .} for which c(j) = c, we can express the linear regression

model for each experimental condition c in vector format as yic = P0cxic + �ic,
where
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{yic}.

The least-squares solution for each xic is therefore

x̂ic = (PT0cP0c)
−1PT0cyic,

and residuals of the model can be written as

eij = yij − P0c(j)x̂ic(j),

from where we deduce precision estimates

�̂ij = e−2ij .

Next, we compute the likelihood function for precision estimates, assuming that
each precision estimate comes from a common gamma density Gamma(�, �):

L(�, �∣�̂) =
I∏
i=1

J∏
j=1

f(�̂ij ∣�, �), �̂ij ∣�, � ∼ Gamma(�, �).

Maximum Likelihood (ML) estimates are sought for both � and �:(
�̂

�̂

)
= argmax

(�,�)
{L(�, �∣�̂)} ,

which can be performed with Newton-Raphson algorithm.

2 Prior specification (DSection)
The parameter estimates for �, �, and xic, derived from the linear regression
model, are plugged into DSection in the following manner:

� := �̂, � := �̂, � := �̂/�̂, ∀(t, i, c)(�tic := x̂tic).
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From now on, expression for cell type t, probe i under experimental condition
c, xtic, has a prior density

xtic∣�tic, � ∼ Normal(�tic, 1/�),

precision of probe i, �i, has density

�i∣�, � ∼ Gamma(�, �),

and cell type proportion vector for tissue sample j, pj , has density

pj ∣w0,p0j ∼ Dirichlet(w0p0j).

3 Posterior specification (DSection)
Next, we calculate the posterior densities. Let j∗, again, denote the running
index for which c(j∗) = c. Furthermore, the following short-hand notation will
be adopted:

Atij∗ =
∑
t′ ∕=t

pt′j∗xt′ic.
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The posterior for xtic is
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for �i the posterior is

f(�i∣⋅) ∝ f(�i∣�, �)
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and, finally, for pj the (un-normalized) posterior is

f(pj ∣⋅) ∝ f(pj ∣w0p0j)

I∏
i=1

f

(
yij

∣∣∣ T∑
t=1

ptjxtic, �i

)

∝ exp

⎧⎨⎩−1

2

I∑
i=1

�i

(
yij −

T∑
t=1

ptjxtic

)2
⎫⎬⎭

T∏
t=1

p
w0p0tj−1
tj

= exp

⎧⎨⎩−1

2

I∑
i=1

�i

(
yij −

T∑
t=1

ptjxtic

)2

+

T∑
t=1

(w0p0tj − 1) ln (ptj)

⎫⎬⎭.
4 Sampling (DSection)
Parameters xtic and �i are sampled using Gibbs sampling, whereas for pj
Metropolis-Hastings is employed. An algorithmic representation for the sam-
pling process is on Table 1.
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for s = 1 : (B + S) do
for j = 1 : J do
pj ∼ K(p∗j → pj)
u ∼ U(0, 1)
if u < min

{
1, �j(p

∗
j → pj)

}
then

MCData(s).pj ← pj
else
MCData(s).pj ← p∗j

end if
end for
for i = 1 : I do

MCData(s).�i ∼ f(�i∣⋅)
for t = 1 : T do

for c = 1 : C do
MCData(s).xtic ∼ f(xtic∣⋅)

end for
end for

end for
end for
MCData← MCData((B + 1) : (B + S))

Table 1: algorithmic representation of the sampling process for DSection. Vari-
able s is the sampling index that runs from 1 to B + S, where B is the number
of burn-in iterations to be discarded after sampling, and S is the length of the
resulting Markov chain.

4.1 Initializing the DSection sampler
Before starting the sampling process in order to generate Markov chains for the
model parameters, one needs to initialize the sampler with proper parameter
values. Theoretically it does not matter how the sampler is initialized as the
sampler will eventually converge to the posterior distribution. However, a poor
initialization of the sampler may take a longer time to attain the posterior in
contrast to careful initialization. We choose to take advantage of the already-
computed least-squares solution for the respective linear regression model, where
one basically obtains estimates for �i and xtic. Moreover, the proportion vectors,
pj , are initialized with the prior information, p0j , directly.
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5 Deriving ground-truth for Affymetrix data

Sample (j) 1− 3 4− 6 7− 9 10− 12 13− 21 22− 24 25− 27 28− 30 31− 33
Brain (p1j) 0.00 0.05 0.10 0.25 0.50 0.75 0.90 0.95 1.00
Heart (p2j) 1.00 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.00

Table 2: Known cell type proportions for each sample in Affymetrix data. For
each mixing experiment (one column of the table), a triplet of measurements
have been conducted except for samples 13−21, which all have 50%/50% mixing
ratio. Samples 10−12 and 22−24 were used for estimating cell type specific gene
expression profiles, and the expression estimates were then compared to the pure
cell type specific gene expressions (samples 1−3 and 31−33). Furthermore, we
included samples 7− 9 and 25− 27 when testing how increasing the number of
heterogeneous samples for analysis with DSection affects the model performance.

Although no ground-truth for replication variances of Affymetrix data truly
exists, we estimate them on the basis of sample-groups having identical cell
type proportions. That is, samples 1 − 3 have identical cell type proportions
(0%/100%), so do samples 4 − 6 (5%/95%), etc., which – when grouped –
yield sample variance estimates over which we consequently compute the sam-
ple mean. This “ground-truth” serves as our reference for making comparisons
against model estimates similarly to that of our simulation case.

Moreover, no ground-truth for truly differentially and non-differentially ex-
pressed genes exist for Affymetrix data. However, based on the derived estimates
for replication variances and non-heterogeneous expression measurements (sam-
ples 1−3 for heart and 31−33 for brain), both hidden from the actual analysis,
we produced a binary list representing ground-truth differential expression. The
list was obtained by considering, gene-wise, the average expressions in both cell
types, brain and heart, and if the absolute difference of cell type specific ex-
pressions was bigger than

√
2/(3�i), i.e., the denominator of the two-sample

t-test with equal sample sizes of three, we declared that gene to be differentially
expressed. Thus, decreasing gene-specific replication variance (increasing pre-
cision) and increasing sample size both decrease the threshold. We tried other
thresholding criteria as well, such as

√
1/�i (one-STD confidence) and

√
4/�i

(two-STD confidence), yielding very similar results to what are shown in the
actual manuscript.

6 Adding noise to cell type proportions
In the simulation, ground-truth cell type proportions were first drawn from
Dirichlet(3, 3, 3), a density that is lightly concentrated around its mode,
(1/3, 1/3, 1/3). These proportion vectors were further transformed to noisy
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priors which reflect the inaccuracy of, say, manual or automated image anal-
ysis performed on basis of tissue images. The transformation first maps each
ground-truth proportion, ptj , uniformly to [0.5 ∗ ptj , 1.5 ∗ ptj ], after which the
vectors are normalized back to the T -simplex. This convention does not bias
the proportions, i.e., the expected value of the randomization equals to the
ground-truth.

7 Testing for differential expression
The test statistics of the two-sample t-test – assuming equal variance and un-
equal sample sizes, and that we are testing whether expression of probe i is
differentially expressed between tissues t1, t2 and experimental conditions c1, c2
– is computed by

ttest(xt1ic1 vs xt2ic2) =
x̂t1ic1 − x̂t2ic2√

1√
�̂i

(
1
n1

+ 1
n2

) , (1)

where the hats denote the respective MCMC estimates, and n1 and n2 are
the number of tissue samples (j ∈ {1, . . . , j, . . . , J}) for which c(j) = c1 and
c(j) = c2, respectively.

7.1 p-values, multiple correction, false discovery rate
The t-test statistics can then be transformed into p-values, to which further
multiple correction methods such as the well-known and widely used Bonfer-
roni’s, Benjamini-Hochberg’s, and Storey’s (q-value) methods can be applied,
for controlling the number of false positives. As we demonstrate only the perfor-
mance of the method itself over the whole range of significance thresholds, i.e.,
with the receiver operating characteristics (ROC) curves, the use of multiple
correction methods would not have made any difference to the outcome of our
analysis; thus, only “uncorrected” p-values were computed and used throughout
the manuscript (as it is easier to threshold p-values than the original test statis-
tics). However, in any actual analysis where a significance threshold needs to
be carefully chosen so as to not invoke “too many” false positives in the data,
such multiple correction methods are advised to be applied.

Based on the p-value histograms we computed from the extracted test statis-
tics, Storey’s q-values would have been well applicable for estimating FDR as
the prior assumptions of the shapes of the histograms (peak near 0, flat over
the support [0, 1]) seemed to hold in most cases.
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